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Abstract

Inviscid flow modelling has predominantly been employed in
the numerous studies on flow-induced flutter instability of flex-
ible cantilevers. This approach has been supported by the pre-
vailing characteristics, giving high Reynolds numbers, of such
fluid–structure interaction (FSI) systems in the wide range of
engineering applications. By contrast, in this paper, a numer-
ical model coupling a one-dimensional elastic beam model to
the Navier–Stokes equations is used to determine the linear
flutter-instability characteristics of a slender flexible cantilever
immersed in two-dimensional viscous channel flow for laminar
flow conditions. The results show that the FSI instability bound-
aries and the pre- and post-critical cantilever motion can be
significantly altered by the non-negligible contribution of vis-
cous effects to the hydrodynamic forces. In general, this model
predicts that the FSI system becomes more stable for Reynolds
numbers (based on channel height) lower than 100. For cases
within this range of very low Reynolds numbers, this study fo-
cuses on the particular fluid-to-solid mass ratios at which vis-
cous effects can possibly lead to a change in the critical mode
that first becomes unstable.

Introduction

Flow-induced flutter instability of flexible cantilevers has been
extensively investigated on account of the wide range of ap-
plications of this fundamental fluid–structure interaction (FSI)
system. In most long-established fields of engineering where
immersed flexible cantilevers are encountered, the large-scale
structures and the high flow speeds give high Reynolds num-
bers, so inviscid flow is usually assumed in the FSI modelling
[7, 5, 9]. The analysis of biomechanical systems, such as flutter
of the soft palate in the upper airway during snoring [1], and the
emergence of innovative energy harvesting concepts [10], have
sustained interest in this canonical FSI problem. For these ap-
plications, low flow speeds or small- and micro-scale systems
can give low Reynolds numbers, so the effect of viscosity on
the flow-induced motion of the cantilever needs to be better un-
derstood.

To date, only limited work on the effects of viscosity on the
stability of a channel-immersed cantilever has been conducted.
Relatively few investigators [12, 14] have employed the Navier-
Stokes equations in the modelling of this FSI system. In gen-
eral, the main aim of doing so was to obtain more detailed pre-
dictions of the flow field and the vortex dynamics downstream
of the cantilever free end. However, most of these studies only
considered moderate Reynolds numbers (Re∼ 102) or were re-
stricted to particular system configurations.

In this study, the FSI dynamics of a slender flexible cantilever
immersed in viscous channel flow is analysed by using a nu-
merical model coupling a one-dimensional elastic beam model
to the Navier–Stokes equations. The characterisation of the lin-
ear flutter instability of the immersed cantilever for laminar flow
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Figure 1: Description of the FSI system modelling (not to
scale): flexible cantilever immersed in viscous channel flow and
dimensional (indicated by an asterisk) physical quantities of the
problem.

conditions shows the influence of the increased contribution of
viscous effects to the hydrodynamic forces on the critical state,
or flutter threshold, of the FSI system.

Theoretical Modelling

The FSI system, as shown in Fig. 1, is a flexible cantilever of
length L∗C and thickness h∗C immersed in a viscous fluid flowing
in a two-dimensional channel of length L∗ and height H∗ [4,
1, 2]. The fluid has density ρ∗F and dynamic viscosity µ∗F. The
flexible cantilever has density ρ∗C and Young’s modulus E∗. It is
clamped to a rigid plate of length L∗inlet, parallel to the channel
walls, dividing the upstream end of the channel into two inlets
of identical height H∗/2. At both inlets, steady Poiseuille flows
are imposed with average velocity U∗. At the channel outlet,
located at a distance L∗outlet from the downstream free end of the
flexible cantilever, the flow is assumed to be parallel and axially
traction-free.

The system is analysed in non-dimensional form by scaling all
coordinates and lengths on H∗, velocities on U∗, fluid pressure
on ρ∗FU∗2, time on H∗/U∗, and solid tractions and stresses on
the effective Young’s modulus E∗eff = E∗/(1− ν2), where ν =
0.4 is the Poisson ratio of the cantilever material.

The fluid flow is governed by the non-dimensional incompress-
ible Navier–Stokes equations

∂u
∂t

+u ·∇u =−∇p+
1

Re
∇

2u (1)

and the continuity equation

∇ ·u = 0 , (2)

where u and p are, respectively, the fluid velocity and pressure,
and Re = ρ∗F U∗H∗/µ∗F is the Reynolds number.

The flexible cantilever is chosen slender enough (h∗C = H∗/50
so that h∗C ≤ L∗C/50) to be assumed infinitely thin. It is modelled



as a one-dimensional elastic Kirchhoff–Love beam, allowing
for geometric non-linearity. Its undeformed shape is parame-
terised by a single Lagrangian coordinate ξ, so that the position
vector to a material point on the cantilever’s centreline in the
undeformed configuration is given by rc(ξ). The solid defor-
mation due to an applied traction Teff causes the material points
on the cantilever’s centreline to be displaced to their new posi-
tions Rc(ξ). The cantilever deformation is then governed by the
principle of virtual displacements (PVD) given by
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where
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∂rc

∂ξ
· ∂rc

∂ξ
, A =

∂Rc

∂ξ
· ∂Rc

∂ξ
, (4a,b)

are the squares of the lengths of infinitesimal material line ele-
ments in the undeformed and deformed configurations, respec-
tively. Therefore, the ratio

√
A/a represents the stretch of the

cantilever centreline while the strain γ and bending κ are given
by

γ =
1
2
(A−a) , κ =−(C− c) , (5a,b)

with

c = nc ·
∂2rc

∂ξ2 , C = Nc ·
∂2Rc

∂ξ2 , (6a,b)

representing the curvature of the cantilever centreline, respec-
tively, before and after the deformation. nc and Nc denote the
unit normals (pointing into the fluid) to the top face of the un-
deformed and deformed cantilever centreline, respectively. The
effective Cauchy number

Caeff =
ρ∗FU∗2

E∗eff
=

MU2h3
L

12
(7)

represents the ratio between the fluid inertial forces and the solid
elastic forces, where

M =
ρ∗FL∗C
ρ∗Ch∗C

, hL =
h∗C
L∗C

, U =U∗L∗C

√
ρ∗Ch∗C

B∗
, (8)

are, respectively, the mass ratio, the cantilever thickness-to-
length ratio and the reduced velocity, with the flexural rigidity
B∗ = E∗eff h∗3C /12.

When the flexible cantilever is immersed in the channel flow, the
fluid traction that acts on the cantilever centreline, combining
the fluid tractions acting on its top and bottom faces, depends
on the pressure and viscous shear stress, so that
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For small deformations of the flexible cantilever and inviscid
flow, a solution for the PVD given in Eq. (3) is of the form of
the well known pressure-driven Euler–Bernoulli beam equation
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=

M
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∆p , (10)

where η(x1) is the vertical deflection of the cantilever centre-
line in the Eulerian coordinate system, ∆p(x1) is the distributed

pressure difference between the top and bottom faces of the can-
tilever, and LH = LC = L∗C/H∗ is the ratio between cantilever
length and channel height. This simplified formulation of the
cantilever dynamics, used in numerous studies [7, 3, 9], pro-
vides a useful reference to the in vacuo analytical solution (i.e.
∆p = 0).

Computational Methods

The problem was formulated using the open-source finite-
element library oomph-lib [8]. The flexible cantilever was spa-
tially discretised using two-node Hermite beam elements and
the fluid domain using nine-node quadrilateral Taylor–Hood el-
ements with adaptive mesh refinement capabilities. Time step-
ping was done with a Newmark scheme for the solid and a
second-order backward differentiation formula scheme for the
fluid. The FSI problem was discretised monolithically and the
Newton–Raphson method was used to solve the non-linear sys-
tem of equations, employing the SuperLU direct linear solver
within the Newton iteration.

The analysis of the stability/instability of the FSI system was
carried out for variations of the four main non-dimensional pa-
rameters, M, U , LH and Re. The main numerical experiments
consisted in running time-marching simulations of the FSI sys-
tem to obtain the properties of the flexible cantilever oscilla-
tions over the whole (M,U) domain considered for different
combinations of (LH ,Re). It is noted that variations of the non-
dimensional reduced velocity U for a constant Reynolds num-
ber Re correspond to variations of the cantilever flexural rigid-
ity B∗ while keeping the dimensional flow velocity U∗ constant.
For each simulation, the initialisation procedure involved:

1. prescribing the deformation of the cantilever into the sec-
ond in vacuo eigenmode with small (linear mechanics)
amplitude under no-flow conditions;

2. constraining the cantilever in position;
3. gradually introducing the flow in a sequence of steady

states; and
4. releasing the cantilever and solving the unsteady FSI prob-

lem.

The linear stability or instability of the FSI system was deter-
mined from the time trace of the simulated deflection of the
flexible cantilever tip ηT, as shown in Fig. 1. The dimensional
exponential growth rate α∗T and frequency f ∗T of the cantilever
tip oscillations were used to estimate the normalised exponen-
tial growth rate αT = α∗T/ f ∗T , corresponding to the strength of
the instability or instability.

Results

Consolidation of the data obtained from the numerical experi-
ments provides a detailed characterisation of the dynamics of
the immersed flexible cantilever in the (M, U) parameter space
for fixed LH and Re. Figures 2(a) and 3(a) show the expo-
nential growth/decay rate αT of the amplitude of the oscilla-
tory motion of the cantilever tip for Re = 200 and Re = 20,
respectively. The strength of stability (αT < 0) or instability
(αT > 0) is represented by the magnitude of αT, designated by
marked contours. The neutral stability, demarcating the bound-
ary between stable and unstable oscillations, is represented by
the thick solid line corresponding to αT = 0. This curve shows
the effect of the mass ratio M on the critical reduced velocity
Ucrit required to destabilise the flexible cantilever. It highlights
the complex interactions of the flow with the different structural
modes; the sequence of lobes indicating mode-switching from
lower to higher order with increasing M. This classical shape,
with several modal branches, has been seen in many previous
studies, e.g. [5, 13], including those that assume an inviscid
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Figure 2: Dynamic characteristics of the immersed flexible cantilever for LH = 2 and Re = 200: (a) Contours of the exponential growth
rate αT as functions of mass ratio M and reduced flow velocity U . The thick solid line corresponds to neutral stability (αT=0). (b)
Oscillation frequency of the cantilever motion at neutral stability fcrit as a function of mass ratio M. The cantilever eigenfrequencies
(in vacuo linear theory) associated with Modes 2 to 5 are indicated with dashed lines.
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Figure 3: Dynamic characteristics of the immersed flexible cantilever for LH = 2 and Re = 20: (a) Contours of the exponential growth
rate αT as functions of mass ratio M and reduced flow velocity U . The thick solid line corresponds to neutral stability (αT=0). (b)
Oscillation frequency of the cantilever motion at neutral stability fcrit as a function of mass ratio M. The cantilever eigenfrequencies
(in vacuo linear theory) associated with Modes 2 to 5 are indicated with dashed lines.

fluid. Figures 2(b) and 3(b) show the effect of the mass ratio
M on the critical frequency fcrit, at which the cantilever tip os-
cillates when the system is neutrally stable (U = Ucrit). For all
mode orders, the immersed cantilever oscillates at a frequency
lower than the in vacuo linear eigenfrequency associated with
the corresponding structural mode. The lower frequency val-
ues can be linked to observations from earlier studies [6, 11],
in which fluid-inertia loading causes a decrease, primarily de-
pendent upon the mass ratio, of the oscillation frequency of a
structure in a fluid, compared with the in vacuo case.

In contrast to the many studies that assume inviscid flow, hence
infinite Reynolds number, the present stability analysis uses un-
steady laminar flow. The comparison between data shown in
Figs. 2 and 3 provides an indication of the effects of viscosity
on the cantilever dynamics, and more particularly on the criti-
cal velocities and frequencies. For a drop in Reynolds number
by one order of magnitude, the neutral stability curves glob-
ally retain their main features. However, when compared to
the Re = 200 curves, the modal transitions for Re = 20 are less
abrupt, and all the structural modes of order greater than 3 are
strongly stabilised and do not become the dominant response
within the range of reduced velocities considered. Also, the
critical velocity curve is shifted to lower mass ratios, so that the
transition from Mode 2 to Mode 3 is triggered for a lower value
of M. Thus, the increased contribution of the viscous effects to

the hydrodynamic forces exerted by the axial flow on the can-
tilever can result in an increase in the critical frequency for a
given mass ratio.

With an inviscid FSI model, the predictions of Ucrit, fcrit and the
first unstable structural mode would only be determined by the
value of mass ratio. By contrast, with the present FSI model, for
the illustrative mass ratio M = 0.6, the critical velocity changes
from Ucrit = 2.9 at Re = 200 to Ucrit = 8.0 at Re = 20, as indi-
cated in Figs. 2 and 3. By more than doubling the critical veloc-
ity value, viscous effects produce, in this case, a significant sta-
bilisation of the FSI system. More importantly, while Mode 2 is
the first unstable structural mode at Re = 200, Mode 3 becomes
the first unstable structural mode at Re = 20. Consequently, the
critical frequency also more than doubles when the Reynolds
number decreases from 200 ( fcrit = 2.7) to 20 ( fcrit = 6.5). Fig-
ure 4 shows the strength of stability/instability in the (Re,U) pa-
rameter space and the effect of the Reynolds number on the crit-
ical velocity and frequency curves for M = 0.6. The trajectories
in the (Re,U) parameter space correspond to two cases involving
fluids having different density ρ∗F and viscosity µ∗F, while keep-
ing the other dimensional geometric and material properties of
the system constant. These two trajectories represent the varia-
tions of the Reynolds number and the reduced velocity with the
variation of the dimensional flow velocity U∗. It can be seen
that they cross the neutral stability curve in two different loca-
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Figure 4: Dynamic characteristics of the immersed flexible cantilever for LH = 2 and M = 0.6: (a) Contours of the exponential
growth rate αT as functions of Reynolds number Re and reduced flow velocity U . The thick solid line corresponds to neutral stability
(αT=0). (b) Oscillation frequency of the cantilever motion at neutral stability fcrit as a function of Reynolds number Re. The cantilever
eigenfrequencies (in vacuo linear theory) associated with Modes 2 to 5 are indicated with dashed lines.

tions. This leads to substantially different predicted conditions
of the critical state for the two cases.

Conclusions

A numerical model has been employed to characterise the dy-
namics of a flexible cantilever immersed in viscous channel
flow. In general, it is shown that a decrease in Reynolds num-
ber does not fundamentally modify the FSI mechanism but has
a stabilising effect on the system, in particular for high fluid-to-
solid mass ratios. Large variations of the neutral stability char-
acteristics and a possible change in the first unstable structural
mode can arise from more dominant viscous effects within the
flow.
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